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Purpose. One important task in population pharmacokinetic/pharma-
codynamic model building is to identify the relationships between the
parameters and demographic factors (covariates). The purpose of this
study is to present an automated procedure that accomplishes this. The
benefits of the proposed procedure over other commonly used methods
are (i) the covariate model is built for all parameters simultaneously,
(i1) the covariate model is built within the population modeling program
(NONMEM) giving familiar meaning to the significance levels used,
(iii) it can appropriately handle covariates that varies over time and
(iv) it 1s not dependent on the quality of the posterior Bayes estimates
of the individual parameter values. For situations in which the computer
run-times are a limiting factor, a linearization of the non-linear mixed
effects model is proposed and evaluated.

Methods. The covariate model is built in a stepwise fashion in which
both linear and non-linear relationships between the parameters and
covariates are considered. The linearization is basically a linear mixed
effects model in which the population predictions and their derivatives
with respect to the parameters are fixed from a model without covari-
ates. The stepwise procedure as well as the linearization was evaluated
using simulations in which the covariates were taken from a real
data set.

Results. The covariate models identified agreed well with what could
be expected based on the covariates that were actually supported in
each of the simulated data sets. The predictive performance of the
linearized model was close to that of the non-linearized model.
Conclusions. The proposed procedure identifies covariate models that
are close to the model supported by the data set as well as being useful
in the prediction of new data. The linearized model performs nearly
as well as the non-linearized model.
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independent variables (times, doses, etc); P;, The ith individuals
vector of model parameters; py;, The ith individuals kth model
parameter; 0, The vector of typical individual model parame-
ters; 0, The kth typical individual parameter; m;, The difference
between ith individuals kth model parameter and the typical
individual parameter value given the covariates; wz, The vari-
ance of my; z;, The ith individuals vector of covariate values;
Z,» The vector of values for the rth covariate; m, The number
of ms in the model; z;,, The ith individuals rth covariate value;
¢iy, The ith individuals contribution of z, on the parameter; 6,,
The coefficient for the relationship between z, and the
parameter.

should be addressed. (e-mail:

1463

Research Paper

INTRODUCTION

One of the important tasks in population pharmacokinetic
(PK) and pharmacodynamic (PD) model building is to identify
the relationship between the parameters of the model and covari-
ates, e.g. demographic factors, clinical laboratory measure-
ments, and indicators for pathological conditions. Originally
candidate covariate relationships were identified based on resid-
ual analysis. Such graphical procedures provided limited infor-
mation and the subsequent analysis often involved a large
number of computer runs and were hence quite time-consuming.
To obtain some guidance as to which covariate influenced which
parameter, Maitre et al. (1) suggested plotting the posterior
Bayes estimates of the parameters from a model without covari-
ates versus each of the covariates. To make the covariate model
building process even more efficient, Mandema et al. (2) pro-
posed a stepwise generalized additive modeling procedure
(GAM). In this procedure the covariates are regressed on the
individual posterior Bayes estimates of the parameters in a
stepwise fashion (one PK or PD parameter at a time) and
the covariates which are significant according to the Akaike
information criteria (AIC) are identified. Since it was first pre-
sented the GAM has been quite frequently used (3,4,5,6,7).

However tractable, the covariate model building methodol-
ogies that utilize the posterior Bayes estimates has a number
of drawbacks. First, they usually only consider one parameter
at a time, meaning the inclusion of a covariate on a parameter
will not influence the significance of the same, or other covari-
ates on the other parameters of the model. Second, the perfor-
mance of of these methods is dependent on the quality of the
posterior Bayes estimates of the individual parameters (these
are used as the dependent variables in the GAM analysis). The
quality of the individual estimates will be influenced by (i) each
individuals® design with respect to estimating the individual
parameters conditional on the population model and (ii) the
quality of the PK or PD observations. Third, it is hard to handle
time varying covariates. In clinical studies which involve more
than one study occasion, time varying covariates are common
and can be important, e.g. clinical laboratory measurements or
markers for disease progression. Fourth, with many of these
methodologies it is hard to judge the relative importance of the
covariates, especially in graphical procedures such as in Mai-
tre’s approach. Even in the GAM, which provides such a rank-
ing, it is still necessary to check each covariate in the
population model.

In the present paper we propose a stepwise procedure for
covariate selection in population analysis that remedies the
drawbacks of the traditional covariate model building proce-
dures. It steps through possible covariate parameter-combina-
tions in a forward fashion, and evaluates their importance in
the population model. The covariate terms in the full forward
model are then evaluated using backwards elimination. This
approach uses less number of computer runs than an exhaustive
search and is practical for models with relatively short run
times. To handle situations with long run-times, we propose a
linearization of the non-linear mixed effects model, i.e. a linear
mixed effects model, to be used during the covariate selection.
This linearization involves an approximation but is considerably
faster than the full non-linear model.
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METHODS

In the following we assume for simplicity of notation,
additive or proportional inter- and intra-individual variability
models and time constant parameters and covariates. The theory,
however, makes no such assumptions.

The Population Model

In population analyses by non-linear mixed effects models,
itis usually assumed that the data can be described by the model:

yi = f(P, X;) + €; (1

where y; is the jth observation from the ith individual (e.g.
concentrations or effect measurements), f( ) is a model (PK or
PD) that relates the independent variables, X;; (e.g. time and
dose), to the response given the ith individuals vector of model
parameters P,. €, accounts for the discrepancy between the
model predictions, 7v;, and the observations. €; is usually
assumed independently symmetrically distributed with a vari-
ance o that are either constant for all observations, i.e. an
additive error model, proportional to the predicted re-

sponse, i.e. o ¥;; or a combination of the two.
The P;’s are assumed to be distributed around the their
typical values in the population, ®, according to Eq. 2:

Pri = O + My (2)

where p;; is the kth parameter in P; and 6, is the typical value
of p; in the population. The m,;’s are the differences between
the pp; and the 6, and are assumed to be independently, multivari-
ately symmetrically distributed with mean 0 and variance
7. Often an exponential inter-individual model is used, i.e.
Pri = 8% in which w; is approximately the coefficient of
variation.

Individual parameter values can often be related to demo-
graphic factors such as age, gender, and clinical laboratory
measurements (usually referred to as the covariates) in the
following way:

Pri = 0igilz) + 3)

z; 1s the 1th individuals vector of covariates and g, is a function
of z; (and some parameters, which are notationally suppressed
in Eq. 3) that describes the relationship between p,; and z;. A
more detailed discussion of g() is given below.

The Stepwise Procedure

For each parameter and covariate, a hierarchy of models
are defined. These typically consist of: the covariate not being
included in the model, it is included in a linear fashion, and it
isincluded in anon-linear fashion (see Parameterization below).

The starting model of the stepwise procedure for each
parameter and covariate is the first model in the model hierarchy.
This typically is the basic model without covariates. In the first
step, each model in the second level of the model hierarchy is
tried in the start model, one at a time. The improvement of the
fit relative to the start model, when each of the covariate models
are added univariately are compared and the model with the
largest improvement, given that it is significant, is kept to the
next step. The start model plus the best covariate model in
each step is called the current model. In subsequent steps each
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parameter/covariate combination is tried in the current model
in the functional form given by the next level of the model
hierarchy. This stepwise forward inclusion of covariates ends
when there are no more significant parameter/covariate combi-
nations (the full model). Following the forwards inclusion is a
backwards elimination. During this process each covariate
model in the full model is replaced by the next lower model
in the model hierarchy. The model that contributes the least to
the fit, given that it is not significant, is dropped and a new
current model is formed of the full model with the dropped
model replaced by the next lower model in the hierarchy. The
backwards elimination continues until no more terms can be
dropped. This procedure is similar to the stepwise procedure
that the GAM uses, the difference being that the GAM includes
the possibility to drop any of the covariate models in each step
instead of having a full backwards elimination as a last step.

The goodness of fit is in this paper measured as the drop
in the objective function value (OFV) produced by NONMEM.
The difference in this value between two nested models is
approximately x>-distributed and can be used to obtain a signifi-
cance level of the improvement in fit. In this paper a p-value
of 0.05 was judged significant during the forward inclusion
while a stricter value of p < 0.01 was used during the backwards
elimination. It should be noted, though, that the procedures do
not rely on a specific p-value, nor is it necessary to use the
difference in the OFV as the criteria to discriminate between
rival covariate models. We choose to use p-values (or rather
the difference in the OFV) since this is an often used criteria
when assessing the value of adding more parameters to a model.

Linearization

If the time necessary to fit the model is short, the above
procedure can be applied to the full population model. If, on
the other hand, the run-times are long, the full model approach
is not practical. In such situations we propose using a linearized
version of the model.

The default algorithm in NONMEM, the first order method
(FO), uses a first order Taylor series expansion around the
expected value of the w's, i.e. 0 (8,9).

_ m Vi
Vi =Vt 2 e t gy 4)
=1 9N

where ¥; is the model predictions based on @ (i.e. substituting
P; with ® in Eq. 1), m is the number of 1’s in the model and
8y;;/dmy, 1s the derivative of y; with respect to 1.

The basic idea of the proposed linearization is to use the
same formula as Eq. 4 but adding (linearized) terms for the
covariate effects while keeping y; and dy;/dm,; fixed to the
values obtained from the fit of the basic model, i.e.

"
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(With the linearization, g() has to be centered around zero, in
contrast to the normal population model were it would be
centered around one, see below.) The parameters and function
with an asterisk (*) are the ones estimated when fitting Eq. 5
to the data. Eq. 5 is valid for additive models for inter- and
intra-individual variability and Eq. 6 for proportional models.
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In Egs. 5 and 6, the covariate terms are added using a first
order linearization. A more accurate approximation can be
obtained by using a second order linearization of the covariate
terms, e.g.

mog m a'.’v
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where 4°V;/dmj; is the second derivative of ¥, with respect to 1.

The covariate model, in any one step, together with the
second derivatives can be also used to update the first deriva-
tives in the n-term in the above equations. This is accomplished
according to Eq. 8.

S~ _ .
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dv;;/om;, denotes the ith individuals jth updated first derivative
value with respect to v,. Combining Eq. 7 and Eq. 8 yields:

meoog " (',)3_
; + 2(z)* + (2"
m H_\_'i/'
+ > = (1 + gz mE |+ g (9)
k=1 0Ny

If a covariate has a strong influence on one or more of the
parameters of the model, the misspecification of the lineariza-
tion can be decreased even further by obtaining y;. d¥;/dmy,
and 9~ »,,/287“, from a model including the covariate.

Since the coefficients of g.(z;) will be different when esti-
mated using the linearization compared to the corresponding
non-linearized model, it is necessary to re-run the final covariate
model in the regular (non-linearized) population model.

Parameterization

This section concerns the form of g(z,). In the present
paper it is assumed that the relationships between the parameters
and continuous covariates can be described by either a one
slope model or a two slope model (i.e. two linear functions
with the intersection at the median of the covariate space)
and the relationship between the parameters and categorical
covariates as a shift in the intercept. If a parameter is influenced
by more than one covariate, the model is parameterized in a
multiplicative fashion. A multi-covariate model will be assumed
to be additive in the sense that interactions between covariates
are not accounted for. Eq. 10 gives a general formula for the
combination of covariate effects,

4

g = [10+e) (10)

¢;, s the ith individual’s contribution to the effect of the covari-
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ate z, on the parameter in question (further details are given
below).

It is usually a good idea to center the relationships between
continuous covariates and parameters around the value of the
covariate for the typical individual in the population. For a
continuous covariate this is done according to Eq. 11 (assuming
a linear relationship).

(1

where z;, 1s the ith individuals covariate value and 8, is the
fractional change in the parameter in question per unit change
in the covariate. Categorical covariates are usually not centered
in the normal population model but is handled by one or more
if statements. For example, ¢, for a bivariate covariate with
levels a and b can be parameterized according to Eq. 12.

_Jo
Cir = er

The meaning of 8, in Eq. 12 is the fractional change in the
parameter for individuals of category b.

This parameterization will make the model numerically
more stable as well as give the parameters of the model a more
relevant meaning compared to when the covariates are not
centered (e.g. since the product of all covariate effects for the
typical individual will be 1, 8; in Eq. 3 will be the parameter
estimate for the typical individual with respect to the covariates).

With the linearization it is necessary to center the covari-
ates, because the predictions from the basic model, the y;;, are
fixed in the linearization, and are the predictions from the
typical individual. This also means the categorical covariates
must be centered. For the same bivariate covariate used as
an example in Eq. 12, centering can be accomplished in the
following way

o = {

where f, is the fraction of the individuals with g as the value
of the covariate. Categorical covariates with more than two
levels can not be centered in this way.

Since the linearization requires g() to be 0 for the typical
individual, it will also be necessary to modify Eq. 10 (which
will be 1 for the typical individual). This is done simply by
subtracting | from the product of all covariate contributions
(Eq. 14).

¢, = 04z, — median(z,))

ifz,, =a

b (12)

lf Zir

It

8.fa
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if Zir
if z

(13)

q
glz) = —1+ ﬂl(l + ci) (14)
=
Given the covariates are centered as described above, the linear
approximation will be close to the non-linear model for weak
covariate relationships and for individuals that have almost the
same covariate values as the typical individual. The approxima-
tion will be less exact for strong covariate relationships and
for individuals with extreme covariate values.

Evaluation of the Stepwise Procedure

The stepwise procedure and linearization were evaluated
using simulations. The benefit of simulations is the true model
is known. The drawback, on the other hand, is it is impossible to
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obtain the same complexity (e.g. with respect to the covariance
structure between parameters, covariates and observations) as
in a real data set. As a compromise, the data were simulated
using covariates from a real data set.

Ten data sets of 64 individuals each were simulated. The
sampling design was 0.5, 2, 4 and 6 hours post dose in half of
the individuals and 0.5, 2, 8 and 12 hours post dose in the other
half. The covariates were taken from the data set of DRUG C
in the paper by Mandema et al. (2) and included AGE (age,
median = 56 years, range = 24-69), HT (height, median =
173 cm, range = 140-188), WT (body weight, median = 85
kg, range = 51-137), SEX (gender, 42 males and 22 females),
SMOK (smoking, yes = 16, no = 48), RACE (race, cauca-
sian = 44, black = 20), PROP (co-treatment with propranolol,
no = 54, yes = 10), HCTZ (co- treatment with hydrochlorotia-
zide, yes = 35, no = 29) and CON (other co-medication,
yes = 51, no = 13). The same covariate values were used in
all data sets.

The drug-ievels were generated from a one compartment
model with first order absorption under steady-state conditions.
Clearance (CL) was related to AGE (in a non-linear fashion)
and SEX, while the volume of distribution (V) was related to
HCTZ and WT. The relationship between CL and AGE was
formulated as a “hockey-stick” model, i.e. a constant CL for
AGE-values below the median AGE and a linear decrease in
CL for AGE-values higher than the median AGE. The covariate
relationships were constructed so that the ratios between the
parameter values for the lower and higher extremes (of the
covariates) were approximately 0.5, 0.8, 0.55 and 0.6 for AGE
on CL, SEX on CL, HCTZ on V and WT on V respectively.
The covariate models were parametrizised according to Eqgs.
11 and 13. The data were generated using exponential inter-
individual variability models (the n-models) and a proportional
residual error model (the €-model). The parameter values used
to simulate the data are summarized in Table I.

The stepwise procedure was applied to three different ways
of formulating the mixed effects model. The first was the regular
population model (hereafter referred to as the non-linear model),
the second was the linearized model (Eq. 9, hereafter referred
to as the linear model) and the third was the linearized model
using the ¥; and d¥;/dmy; obtained from a model including the
most important covariate (as indicated by the corresponding
linear model), hereafter referred to as the linear+ model.

Table I. Parameter Values Used in the Simulations

Parameter Value
CL 20
\% 100
Ka 2
Wey, 25%
Wy 25%
Wk 20%
a 15%
AGE on CL¢ —0.0385
SEX on CL 0.195
HCTZ on V —-0.560
WT on V 0.006

“ The value refers to the slope for AGE values > the median value
of age (56 years).
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To determine which of the true covariate relationships
were actually supported by each of the ten simulated data sets,
the true covariate model was evaluated using a backwards
elimination similar to the one used in the stepwise procedure
(see above). This model will be referred to as the “supported”
model, while the covariate model that was used to generate the
data will be called the nominal model.

One way to assess the similarity between covariate models
is to compare the actual covariate terms included. This might,
however, not be a relevant criteria with respect to the usefulness
of the covariate models, partly since two models with different
covariate terms might still be equivalent in terms of prediction
due to correlations between the covariates and partly because
identical models might produce different results simply because
the covariate term coefficients are different. The predictive
performance of the methods were therefore evaluated in a new
data set. The new data set consisted of 12800 individuals gener-
ated by replicating the original data set 200 times (with new
mn’s and €'s). The predictive performance was measured as
the root mean squared error (RMSE) between the log of the
“observed” concentration and the log of the predictions for the
typical individual.

The mixed effects models, linear as well as non-linear,
were fitted using NONMEM. The stepwise procedure was writ-
ten in the S language as implemented in S-PLUS version 3.4
(MathSoft Inc. 1997).

RESULTS

Table Il compares the covariate selection to the nominal
covariate model. There were no difference in the selection of
HCTZ on V and only minor differences in the selection of AGE
on CL although the linear method did not find the covariate in
the correct functional form as often as the other methods. The
linear model also performed worse in the selection of the other
covariates, compared to the non-linear and the linear+ models.
The non-linear model inciuded a total of 16 covariates not in
the nominal model compared to 8 and 10 for the linear and
linear+ model respectively.

Figure 1 is a box and whiskers plot of the RMSE for the
different methods. Included is also the RMSE of the basic
model (i.e. no covariate relationships) for each data set. The
median RMSE for the supported, non-linear, linear+, linear
and basic models were 0.47, 0.48, 0.48, 0.50 and 0.59 respec-
tively. The RMSE of the nominal model with the true parameter
values (Table I) was 0.44.

Table II. Summary of the Covariate Selection

Method AGE SEX HCTZ WT False CL  False V
Non-linear  9(7) 6 10 7(6) 7 9
Linear 8(3) 2 10 2(2) 4 4
Linear+ 8(6) 4 10 5(5) 5 5
Supported 9(6) 5 10 5 — —_—

Note: The figures are the number of times each of the methods identified
any of the covariates in the nominal covariate model. The figures in
parentheses are the number of times the covariate entered the model
in the correct functional form (e.g. non-linear for AGE on CL). The
two rightmost columns gives the number of times covariates not in
the nominal covariate mode! was found (CL and V respectively).



Automated Covariate Model Building Within NONMEM

(1 L]
L]

Basic

inear ; r . —I
" C 1

Linear+ l_ * J

Non-linear E__ . W

Supported - IL . _I

0.45 0.50 0.55 0.60

RMSE

Fig. 1. A box and whiskers plot of the root mean squared error (RMSE)
between the true concentrations and the predictions obtained with
the basic, linear, linear+, non-linear and supported covariate models
respectively. The dot in each box is the median. The length of each
box is the inter-quartile range. The whiskers extend to the point that
is less/greater than or equal to upper/lower quartile times 1.5. Any
value beyond the whiskers is indicated by a circle.

The supported and the non-linear model had the lowest
RMSE in three data sets each while the linear and the linear+
had the lowest RMSE in two data sets each. The basic model
had the highest RMSE in all of the data sets.

The difference in run time between the non-linear linear
and the two linear methods was approximately a factor of four,
i.e. the non-linear model took about four times as long to run.

DISCUSSION

This paper presents a stepwise covariate model building
algorithm that avoids drawbacks present with many other covari-
ate model building procedures, for example the GAM (2). The
present procedure builds the covariate model within the popula-
tion model which means that covariate effects can be included
and evaluated simultaneously on all parameters; the significance
levels used for judging the importance of the covariates will have
a familiar meaning and there is no dependence on the posterior
Bayes estimates of the individual parameter values. The latter
can be a major problem with sparse, poorly designed individual
sampling schemes. The present procedure also has the benefit of
being able to handle covariates that vary between study occa-
sions, although that aspect is not addressed in this study.

The main drawback of building covariate models in the
proposed way is the potentially long computer run-times. As
a remedy to this problem we also evaluated an approximation
(i.e. linearization) of the non-linear mixed effects model which
decreased the run-times by a factor of four. This factor can be
expected to increase with more complicated structural models.
This is because the run-times of the linearized model will only
increase with the amount of data, number of covariates, and
the number of parameters for which a covariate model is built,
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i.e. not the size or complexity of the structural model. The run-
times for the non-linear model, on the other hand, will also
increase with the complexity of the structural model, a relation-
ship that tends to be non-constant, i.e. a doubling of the number
of parameters will more than double the run-times.

Even with the linearization, the run-times of the stepwise
procedure will be much longer than running, for example, the
GAM on each of the parameters of the model or performing a
graphical analysis of the posterior Bayes estimates and covari-
ates. With these methods, itis then necessary to critically evaluate
the covariate relationships found. With the stepwise procedure,
on the other hand, the evaluation is an integrated part of the meth-
odology. Regardless of the approach taken when evaluating the
covariate model found by the posterior Bayes estimates methods,
it will involve a fair number of runs and it is not unlikely the
evaluation procedure will take as long as the (linearized) stepwise
procedure. Apart from the relative run-times of the existing meth-
odologies and the proposed procedure, there are other aspects of
the covariate model building strategies that need to be investi-
gated further, for example the performance of the found covariate
models in a data set not used to dertve the covariate model and
the sensitivity to structural and statistical model misspecification.

The stepwise procedure involves a large number of NON-
MEM runs and requires an automated routine to be practical and
efficient. Such aroutine will also have the benefitof being consis-
tent in the way covariate models are built, something that simpli-
fies the writing of reports and similar documents and will reduce
the frequency of user-induced errors. Also the information gained
when trying intermediate models, not included in the full or final
models, may be useful, for example, to characterize the absence
of a relationship. The code for the routine used for this work is
available upon request to the authors. In addition, a more general
and exportable version of the routine is under development.

In terms of selecting covariate relationships, the lineariza-
tion seems to be a reasonable approximation to the non-linear
mixed effects model. Although their performance did not quite
match the non-linear model in terms of selecting true covariates,
the linear models also selected fewer false relationships. Based
on the more relevant criteria of predicting concentrations for new
individuals of the same population, the linear models performed
similarly to the non-linear model. The small trend observed indi-
cates a better performance for the non-linear model is what can
be expected due to the approximations of the linear models.

An alternative fo using the predictions and derivatives
from the basic model is to obtain them from a model already
including the most important covariate(s). The way it was done
in the present study was to first run the linear model to identify
the most important covariate and then use that covariate to
obtain the predictions and derivatives. An alternative is to auto-
matically recalculate the derivatives and predictions based on
the current model. This would involve the estimation of all
parameters of a non-linear mixed effects model each time the
current model changes, i.e. as many times as there are covariate
relationships in the full model. Yet another alternative is to
perform such recalculation only for the first covariate relation-
ship(s) included.

One drawback of the linearization is the necessity of having
the first and second derivatives available. Fortunately, they can
be obtained from NONMEM without having to do the algebra
manually (9).
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In conclusion, we have presented a stepwise procedure for
covariate model building in population analysis of PK and PD
data. It evaluates all the covariate in a stepwise fashion within
the population model and selects the covariates which are sig-
nificant according to the same criteria that is used during other
population model building phases. The advantages over other
covariate model building procedures is it can handle time-
varying covariates, is not dependent on the posterior Bayes
estimates, and it considers covariate effects on all parameters
at the same time. As a complement we also propose a lineariza-
tion of the non-linear mixed effects model (the example used
in this paper) which performed nearly as well as the non-linear
mixed effects model.
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